119 research outputs found

    Symbolic powers of monomial ideals and Cohen-Macaulay vertex-weighted digraphs

    Full text link
    In this paper we study irreducible representations and symbolic Rees algebras of monomial ideals. Then we examine edge ideals associated to vertex-weighted oriented graphs. These are digraphs having no oriented cycles of length two with weights on the vertices. For a monomial ideal with no embedded primes we classify the normality of its symbolic Rees algebra in terms of its primary components. If the primary components of a monomial ideal are normal, we present a simple procedure to compute its symbolic Rees algebra using Hilbert bases, and give necessary and sufficient conditions for the equality between its ordinary and symbolic powers. We give an effective characterization of the Cohen--Macaulay vertex-weighted oriented forests. For edge ideals of transitive weighted oriented graphs we show that Alexander duality holds. It is shown that edge ideals of weighted acyclic tournaments are Cohen--Macaulay and satisfy Alexander dualityComment: Special volume dedicated to Professor Antonio Campillo, Springer, to appea

    Powers of the vertex cover ideals

    Get PDF
    We describe a combinatorial condition on a graph which guarantees that all powers of its vertex cover ideal are componentwise linear. Then motivated by Eagon and Reiner's Theorem we study whether all powers of the vertex cover ideal of a Cohen-Macaulay graph have linear free resolutions. After giving a complete characterization of Cohen-Macaulay cactus graphs (i.e., connected graphs in which each edge belongs to at most one cycle) we show that all powers of their vertex cover ideals have linear resolutions

    On the (parameterized) complexity of recognizing well-covered (r,l)-graphs.

    Get PDF
    An (r,ℓ)(r,ℓ)-partition of a graph G is a partition of its vertex set into r independent sets and ℓℓ cliques. A graph is (r,ℓ)(r,ℓ) if it admits an (r,ℓ)(r,ℓ)-partition. A graph is well-covered if every maximal independent set is also maximum. A graph is (r,ℓ)(r,ℓ)-well-covered if it is both (r,ℓ)(r,ℓ) and well-covered. In this paper we consider two different decision problems. In the (r,ℓ)(r,ℓ)-Well-Covered Graph problem ((r,ℓ)(r,ℓ) wcg for short), we are given a graph G, and the question is whether G is an (r,ℓ)(r,ℓ)-well-covered graph. In the Well-Covered (r,ℓ)(r,ℓ)-Graph problem (wc (r,ℓ)(r,ℓ) g for short), we are given an (r,ℓ)(r,ℓ)-graph G together with an (r,ℓ)(r,ℓ)-partition of V(G) into r independent sets and ℓℓ cliques, and the question is whether G is well-covered. We classify most of these problems into P, coNP-complete, NP-complete, NP-hard, or coNP-hard. Only the cases wc(r, 0)g for r≥3r≥3 remain open. In addition, we consider the parameterized complexity of these problems for several choices of parameters, such as the size αα of a maximum independent set of the input graph, its neighborhood diversity, or the number ℓℓ of cliques in an (r,ℓ)(r,ℓ)-partition. In particular, we show that the parameterized problem of deciding whether a general graph is well-covered parameterized by αα can be reduced to the wc (0,ℓ)(0,ℓ) g problem parameterized by ℓℓ, and we prove that this latter problem is in XP but does not admit polynomial kernels unless coNP⊆NP/polycoNP⊆NP/poly

    The renin‐angiotensin‐aldosterone system and its suppression

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148403/1/jvim15454-sup-0001-supinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148403/2/jvim15454-sup-0002-figures.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148403/3/jvim15454-sup-0005-TableS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148403/4/jvim15454-sup-0004-TableS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148403/5/jvim15454-sup-0007-TableS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148403/6/jvim15454_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148403/7/jvim15454.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148403/8/jvim15454-sup-0006-TableS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148403/9/jvim15454-sup-0003-TableS1.pd

    Structural Organization of DNA in Chlorella Viruses

    Get PDF
    Chlorella viruses have icosahedral capsids with an internal membrane enclosing their large dsDNA genomes and associated proteins. Their genomes are packaged in the particles with a predicted DNA density of ca. 0.2 bp nm−3. Occasionally infection of an algal cell by an individual particle fails and the viral DNA is dynamically ejected from the capsid. This shows that the release of the DNA generates a force, which can aid in the transfer of the genome into the host in a successful infection. Imaging of ejected viral DNA indicates that it is intimately associated with proteins in a periodic fashion. The bulk of the protein particles detected by atomic force microscopy have a size of ∼60 kDa and two proteins (A278L and A282L) of about this size are among 6 basic putative DNA binding proteins found in a proteomic analysis of DNA binding proteins packaged in the virion. A combination of fluorescence images of ejected DNA and a bioinformatics analysis of the DNA reveal periodic patterns in the viral DNA. The periodic distribution of GC rich regions in the genome provides potential binding sites for basic proteins. This DNA/protein aggregation could be responsible for the periodic concentration of fluorescently labeled DNA observed in ejected viral DNA. Collectively the data indicate that the large chlorella viruses have a DNA packaging strategy that differs from bacteriophages; it involves proteins and share similarities to that of chromatin structure in eukaryotes

    S100B as a potential biomarker and therapeutic target in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) pathology is characterized by neuroinflammation and demyelination. Recently, the inflammatory molecule S100B was identified in cerebrospinal fluid (CSF) and serum of MS patients. Although seen as an astrogliosis marker, lower/physiological levels of S100B are involved in oligodendrocyte differentiation/maturation. Nevertheless, increased S100B levels released upon injury may induce glial reactivity and oligodendrocyte demise, exacerbating tissue damage during an MS episode or delaying the following remyelination. Here, we aimed to unravel the functional role of S100B in the pathogenesis of MS. Elevated S100B levels were detected in the CSF of relapsing-remitting MS patients at diagnosis. Active demyelinating MS lesions showed increased expression of S100B and its receptor, the receptor for advanced glycation end products (RAGE), in the lesion area, while chronic active lesions displayed increased S100B in demyelinated areas with lower expression of RAGE in the rim. Interestingly, reactive astrocytes were identified as the predominant cellular source of S100B, whereas RAGE was expressed by activated microglia/macrophages. Using an ex vivo demyelinating model, cerebral organotypic slice cultures treated with lysophosphatidylcholine (LPC), we observed a marked elevation of S100B upon demyelination, which co-localized mostly with astrocytes. Inhibition of S100B action using a directed antibody reduced LPC-induced demyelination, prevented astrocyte reactivity and abrogated the expression of inflammatory and inflammasome-related molecules. Overall, high S100B expression in MS patient samples suggests its usefulness as a diagnostic biomarker for MS, while the beneficial outcome of its inhibition in our demyelinating model indicates S100B as an emerging therapeutic target in MS.This work was supported by Medal of Honor L’Oréal for Women in Science (FCT, UNESCO, L’Óreal) and innovation grant (Ordem dos Farmacêuticos) to AF, a post-doctoral grant from Fundação para a Ciência e Tecnologia (FCT-SFRH/BPD/96794/2013) and a DuPré Grant from the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) to AB, and by FCT-Pest- OE/SAU/UI4013 to iMed.ULisboa.info:eu-repo/semantics/publishedVersio

    Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation

    Get PDF
    The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells’ ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover.National Heart, Lung, and Blood Institute (Grant HL090856-01)Singapore-MIT Allianc

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging
    corecore